Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа №5 г. Балабаново»

«Рассмотрено»

«Согласовано»

«Утверждено»

Руководитель ШМО

Заместитель директора по УВР Директор школы

Pafy Dupadules

Протокол № 1

___/О.Н.Андрейчикова/

OT 25.082

Приказ №

РАБОЧАЯ ПРОГРАММА

учебного предмета

«Математика»

для 10-11 классов

Составитель программы

Баркалова Е.В., математика и физика

Рассмотрено на заседании Педагогического совета МОУ «Средняя общеобразовательная школа №5 г.Балабаново » Протокол №1 от 25.08 ДГ.

2020 г. Балабаново

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА, КУРСА

Модуль «Алгебра и начала математического анализа»

Изучение алгебры и начал математического анализа по данной программе способствует формированию у учащихся личностных, метапредметных, предметных результатов обучения, соответствующих требованиям Федерального государственного образовательного стандарта среднего (полного) общего образования.

Личностные результаты:

- умение ясно, точно, грамотно излагать свои мысли в устной и письменной форме, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
- креативность мышления, инициатива, находчивость, активность при решении математических задач;
- умение контролировать процесс и результат учебной математической деятельности;
- способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
 - умение управлять своей познавательной деятельностью;
- умение взаимодействовать с одноклассниками, детьми младшего возраста и взрослыми в образовательной, общественно-полезной, учебно-исследовательской, проектной и других видах деятельности;
- осознанный выбор будущей профессиональной деятельности на базе ориентирования в мире профессий и профессиональных предпочтений; отношение к профессиональной деятельности как к возможности участия в решении личных, общественных, государственных и общенациональных проблем; формирование уважительного отношения к труду, развитие опыта участия в социально значимом труде;
- воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;
- формирование мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- ответственное отношение к обучению, готовность и способность к саморазвитию и самообразованию на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности.

Метапредметные результаты:

- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы и др.) для иллюстрации, интерпретации, аргументации;
- умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
- умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

- понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
- умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
- первоначальные представления об идеях и методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов.

Предметные результаты:

Предметная область «Арифметика»

- переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и обыкновенную -в виде десятичной, записывать большие и малые числа с использованием целых степеней десятки;
- выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа, находить в несложных случаях значения степеней с целыми показателями, находить значения числовых выражений;
- округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и избытком, выполнять оценку числовых выражений;
- пользоваться основными единицами длины, массы, времени, скорости, площади, объема, выражать более крупные единицы через более мелкие и наоборот;
- решать текстовые задачи, включая задачи, связанные с отношением и пропорциональностью величин, с дробями и процентами.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- решения несложных практических расчетных задач, в том числе с использованием при необходимости справочных материалов, калькулятора, компьютера;
- устной прикидки и оценки результата вычислений, проверки результата вычисления с использованием различных приёмов;
- интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

Предметная область «Алгебра»

- составлять буквенные выражения и формулы по условию задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое, выражать из формул одну переменную через остальные:
- выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями, выполнять разложение многочленов на множители, выполнять тождественное преобразования рациональных выражений;
- решать линейные и квадратные неравенства, системы двух линейных уравнений и неравенств с двумя переменными;
- решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений исходя из формулировки задачи;
- вычислять любой член арифметической и геометрической прогрессии, суммы п-членов прогрессии;
- определять координаты точки плоскости, строить точки с заданными координатами.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами, нахождения нужной формулы в справочниках материалах;

- моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
- описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций.

Предметная область «Элементы логики, комбинаторики, статистики и теории вероятностей»

- проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
- извлекать информацию, представленную в таблицах, диаграммах, графиках, составлять таблицы, строить диаграммы и графики;
- решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;
 - вычислять средние значения результатов измерений;
- находить частоту события, используя собственные наблюдения и готовые статистические данные;
 - находить вероятности случайных событий в простейших случаях.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- выстраивания аргументации при доказательстве и в диалоге;
- распознавания логически некорректных рассуждений;
- записи математических утверждений, доказательств;
- анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблии:
- решение практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
- решение учебных и практических задач, требующих систематического перебора вариантов;
- сравнение шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;
 - понимания статистических утверждений.

Числа и величины

Учащийся научится:

- оперировать понятием радианная мера угла, выполнять преобразования радианной меры в градусную и градусной меры в радианную;
- оперировать понятием комплексного числа, выполнять арифметические операции с комплексными числами;
- изображать комплексные числа на комплексной плоскости, находить комплексную координату числа.

Учащийся получит возможность:

- использовать различные меры измерения углов при решении геометрических задач, а также задач из смежных дисциплин;
 - применять комплексные числа для решения алгебраических уравнений

Выражения

Учащийся научится:

- оперировать понятием корня n –ой степени, степени с рациональным показателем, степени с действительным показателем, логарифма;
- применять понятия корня n-ой степени, степени с рациональным показателем, степени с действительным показателем, логарифма и их свойства в вычислениях и при решении задач;

- выполнять тождественные преобразования выражений, содержащих корень n-ой степени, степени с рациональным показателем, степень с действительным показателем, логарифм;
- оперировать понятиями косинус, синус, тангенс, котангенс угла поворота, арккосинус, арксинус, арктангенс и арккотангенс;
 - выполнять тождественные преобразования тригонометрических выражений.

Учащийся получит возможность:

- выполнять многошаговые преобразования выражений, применяя широкий набор способов и приёмов;
- применять тождественные преобразования выражений для решения задач из различных разделов курса.

Уравнения и неравенства

Учащийся научится:

- решать иррациональные, тригонометрические, показательные и логарифмические уравнения, неравенства и их системы;
 - решать алгебраические уравнения на множестве комплексных чисел;
- понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
 - применять графические представления для исследования уравнений;

Учащийся получит возможность:

- овладеть приёмами решения уравнений, неравенств и систем уравнений; применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
- применять графические представления для исследования уравнений, неравенств, систем уравнений, содержащих параметры.

Функции

Учащийся научится:

- понимать и использовать функциональные понятия, язык (термины, символические обозначения):
- выполнять построение графиков функций с помощью геометрических преобразований;
- выполнять построение графиков вида $y = \sqrt[n]{x}$, степенных, тригонометрических, обратных тригонометрических, показательных и логарифмических функций;
 - исследовать свойства функций;
- понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Учащийся получит возможность:

- проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера;
- использовать функциональные представления и свойства функций для решения задач из различных разделов курса математики.

Элементы математического анализа

Учащийся научится:

- применять терминологию и символику, связанную с понятиями предел, производная, первообразная, интеграл;
 - находить предел функции;
 - решать неравенства методом интервалов;
 - вычислять производную и первообразную функции;

- использовать производную для исследования и построения графиков функций;
- понимать геометрический смысл производной и определенного интеграла;
- находить вторую производную, понимать её геометрический и физический смысл;
- вычислять определённый интеграл;

Учащийся получит возможность:

- сформировать представление о применении геометрического смысла производной и интеграла в курсе математики, в смежных дисциплинах;
 - сформировать и углубить знания об интеграле.

Элементы комбинаторики, вероятности и статистики Учащийся научится:

- решать комбинаторные задачи на нахождение количества объектов или комбинаций;
 - применять формулу бинома Ньютона для преобразования выражений;
- использовать метод математической индукции для доказательства теорем и решения задач;
 - использовать способы представления и анализа статистических данных;
 - выполнять операции над событиями и вероятностями.

Учащийся получит возможность:

- научится специальным приёмам решения комбинаторных задач;
- характеризовать процессы и явления, имеющие вероятностный характер.

Модуль «Геометрия»

Личностные результаты:

- формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
- формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- формирование коммуникативной компетентности и общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
- умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- креативность мышления, инициативу, находчивость, активность при решении геометрических задач;
- умение контролировать процесс и результат учебной математической деятельности;
- способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений

Метапредметные результаты:

Регулятивные универсальные учебные действия:

- умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- умение осуществлять контроль по результату и способу действия на уровне произвольного внимания и вносить необходимые коррективы;

- умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;
- понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
- умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера

Познавательные универсальные учебные действия:

- осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
- умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
- умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
- формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
- формирование первоначальных представлений об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
- умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
- умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач

Коммуникативные универсальные учебные действия:

- умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы;
- умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов;
 - слушать партнера;
 - формулировать, аргументировать и отстаивать свое мнение

Предметные результаты:

- осознание значения математики для повседневной жизни;
- представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;
- умение описывать явления реального мира на математическом языке; представление о математических понятиях и математических моделях как о важнейшем инструментарии, позволяющем описывать и изучать разные процессы и явления;
 - представление об основных понятиях, идеях и методах геометрии;
- владение методами доказательств и алгоритмов решения; умение их применять, проводить доказательные рассуждения в ходе решения задач;
- практически значимые математические умения и навыки, способность их применения к решению математических и нематематических задач;

– владение навыками использования компьютерных программ при решении математических задач.

Учащийся научится:

- оперировать понятиями: точка, прямая, плоскость в пространстве, параллельность, перпендикулярность прямых и плоскостей;
- распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб);
 - изображать геометрические фигуры с помощью чертёжных инструментов;
- извлекать информацию о пространственных геометрических фигурах, представленную на чертежах;
- применять теорему Пифагора при вычислении элементов стереометрических фигур;
- находить объёмы и площади поверхностей простейших многогранников с применением формул;
 - распознавать тела вращения: конус, цилиндр, сферу, шар;
- вычислять объёмы и площади поверхностей простейших многогранников и тел вращения с помощью формул;
 - оперировать понятием декартовы координаты в пространстве;
 - находить координаты вершин куба и прямоугольного параллелепипеда;
- знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;
 - понимать роль математики в развитии России.

В повседневной жизни и при изучении других предметов:

- соотносить абстрактные геометрические понятия и факты с реальными жизненными объектами и ситуациями;
- использовать свойства пространственных геомтрических фигур для решения задач практического содержания;
 - соотносить площади поверхностей тел одинаковой формы различного размера;
- оценивать форму правильного многогранника после спилов, срезов и т. п. (определять количество вершин, рёбер и граней полученных многогранников).

Учащийся получит возможность научиться:

- применять для решения задач геометрические факты, если если условия применения заданы в явной форме;
- решать задачи на нахождение геометрических величин по образцам или алгоритмам;
- делать (выносные) плоские чертежи из рисунков объёмных фигур, в том числе рисовать вид сверху, сбоку, строить сечения многогранников;
- извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;
- применять геометрические факты для решения задач, в том числе, предполагающие несколько шагов решения;
 - описывать взаимное расположение прямых и плоскостей в пространстве;
 - формулировать свойства и признаки фигур;
 - доказывать геометрические утверждения;
 - задавать плоскость уравнением в декартовой системе координат;
- владеть стандартной классификацией пространственных фигур (пирамида, призма, параллелепипед);
- использовать свойства геометрических фигур для решения задач практического характера и задач из других областей знаний;

• решать простейшие задачи введением векторного базиса.

В результате изучения математики в старшей школе учащиеся должны: знать/понимать

- значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;
- идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;
- значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;
- возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения;
- универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;
- различие требований, предъявляемых к доказательствам в математике естественных, социально-экономических и гуманитарных науках, на практике;
- роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;
- вероятностный характер различных процессов и закономерностей окружающего мира.

Обще учебные умения, навыки и способы деятельности

В ходе преподавания математики в старшей школе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они продолжают овладение умениями общеучебного характера, разнообразными способами деятельности, приобретают и совершенствуют опыт:

- планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
- решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
- исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
- ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
- проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
- поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии;
- проведения доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;
- решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;
- планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом

материале; использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;

- построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным опытом;
- самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный

2. СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА, КУРСА 10 класс. Модуль «Алгебра и начала математического анализа»

1. Делимость чисел (13 часов)

Понятие делимости. Делимость суммы и произведения. Деление с остатком. Признаки делимости. Сравнения. Решение уравнений в целых числах.

Основная цель – ознакомить с методами решения задач теории чисел, связанных с понятием

делимости.

2. Многочлены. Алгебраические уравнения (17 часов)

Многочлены от одного переменного. Схема Горнера. Многочлен P(x) и его корень. Теорема Безу.

Следствия из теоремы Безу. Алгебраические уравнения. Делимость двучленов на . Симметрические многочлены. Многочлены от нескольких переменных. Формулы сокращённого

умножения для старших степеней. Бином Ньютона. Системы уравнений.

Основная цель – обобщить и систематизировать знания о многочленах, известные из основной

школы; научить выполнять деление многочленов, возведение двучленов в натуральную степень, решать алгебраические уравнения, имеющие целые корни, решать системы уравнений, содержащие уравнения степени выше второй; ознакомить с решением уравнений, имеющих рациональные корни.

3. Степень с действительным показателем (11 часов)

Действительные числа. Бесконечно убывающая геометрическая прогрессия. Арифметический

корень натуральной степени. Степень с натуральным и действительным показателями.

Основная цель — обобщить и систематизировать знания о действительных числах; сформировать

понятие степени с действительным показателем; научить применять определения арифметического

корня и степени, а также их свойства при выполнении вычислений и преобразовании выражений;

ознакомить с понятием предела последовательности.

4. Степенная функция (16 часов)

Степенная функция, ее свойства и график. Взаимно обратные функции. Сложные функции.

Дробно-линейная функция. Равносильные уравнения и неравенства. Иррациональные уравнения.

Иррациональные неравенства.

Основная цель — обобщить и систематизировать известные из курса алгебры основной школы

свойства функций; изучить свойства степенных функций и научить применять их при

решении

уравнений и неравенств; сформировать понятие равносильности уравнений, неравенств, систем

уравнений и неравенств.

5. Показательная функция (10 часов)

Показательная функция, ее свойства и график. Показательные уравнения. Показательные неравенства. Системы показательных уравнений и неравенств.

Основная цель — изучить свойства показательной функции; научить решать показательные

уравнения и неравенства, системы показательных уравнений.

6. Логарифмическая функция (17 часов)

Логарифмы. Свойства логарифмов. Десятичные и натуральные логарифмы. Логарифмическая

функция, ее свойства и график. Логарифмические уравнения. Логарифмические неравенства.

Основная цель — сформировать понятие логарифма числа; научить применять свойства логарифмов при решении уравнений; изучить свойства логарифмической функции и научить применять ее свойства при решении логарифмических уравнений и неравенств.

7. Тригонометрические формулы (23 часа)

Радианная мера угла. Поворот точки вокруг начала координат. Определение синуса, косинуса и

тангенса угла. Знаки синуса, косинуса и тангенса. Зависимость между синусом, косинусом и тангенсом одного и того же угла. Тригонометрические тождества. Синус, косинус и тангенс углов.

Формулы сложения. Синус, косинус и тангенс двойного угла. Синус, косинус и тангенс половинного угла.

Формулы приведения. Сумма и разность синусов. Сумма и разность косинусов. Произведение синусов и косинусов.

Основная цель — сформировать понятия синуса, косинуса, тангенса, котангенса числа; научить

применять формулы тригонометрии для вычисления значений тригонометрических функций и выполнения преобразований тригонометрических выражений; научить решать простейшие тригонометрические уравнения $\sin x = a$, $\cos x = a$ при a = 1, -1, 0.

8. Тригонометрические уравнения (17 час)

Уравнения cosx = a, sinx = a, tgx = a. Тригонометрические уравнения, сводящиеся к алгебраическим. Однородные и линейные уравнения. Методы замены неизвестного и разложения на множители. Метод оценки левой и правой частей тригонометрического уравнения. Системы тригонометрических уравнений. Тригонометрические неравенства.

Основная цель — сформировать умение решать простейшие тригонометрические уравнения; ознакомить с некоторыми приемами решения тригонометрических уравнений; сформировать понятия арксинуса, арккосинуса, арктангенса числа; научить решать тригонометрические уравнения и системы тригонометрических уравнений, используя различные приемы решения; ознакомить с приемами решения тригонометрических неравенств.

Дополнительно изучаются однородные (первой и второй степеней) уравнения относительно sinx и cosx, а также сводящиеся к однородным уравнениям. При этом используется метод введения вспомогательного угла.

При углубленном изучении рассматривается метод предварительной оценки левой и правой

частей уравнения, который в ряде случаев позволяет легко найти его корни или установить, что их нет.

Рассматриваются тригонометрические уравнения, для решения которых необходимо применение нескольких методов. Показывается анализ уравнения не по неизвестному, а по

значениям синуса и косинуса неизвестного, что часто сужает поиск корней уравнения. Также показывается метод объединения серий корней тригонометрических уравнений. Разбираются подходы к решению несложных систем тригонометрических уравнений.

Рассматриваются простейшие тригонометрические неравенства, которые решаются с помощью

единичной окружности.

1. Итоговое повторение (12 часов)

Модуль «Геометрия»

1.Введение. Аксиомы стереометрии. (3 часа).

Предмет стереометрии. Основные понятия стереометрии (точка, прямая, плоскость, пространство) и аксиомы стереометрии. Первые следствия из аксиом.

2.Параллельность прямых и плоскостей (16 часов)

Пересекающиеся, параллельные и скрещивающиеся прямые. Параллельность прямой и плоскости, признак и свойства. Угол между прямыми в пространстве. Перпендикулярность прямых.

Параллельность плоскостей, признаки и свойства. Параллельное проектирование. Изображение пространственных фигур. Тетраэдр и параллелепипед, куб. Сечения куба, призмы, пирамиды.

3.Перпендикулярность прямых и плоскостей (17 часов)

Перпендикулярность прямой и плоскости, признаки и свойства. Перпендикуляр и наклонная. Теорема о трех перпендикулярах. Угол между прямой и плоскостью. Расстояние от точки до плоскости.

Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.

Перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла. Площадь ортогональной проекции многоугольника.

4. Многогранники (12 часов).

Понятие многогранника, вершины, ребра, грани многогранника. Развертка. Многогранные углы Выпуклые многогранники. Теорема Эйлера. Призма, ее основание, боковые ребра, высота, боковая и полная поверхности. Прямая и наклонная призма. Правильная призма.

Пирамида, ее основание, боковые ребра, высота, боковая и полная поверхности. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

Симметрия в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая и зеркальная). Примеры симметрий в окружающем мире.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

5.Векторы в пространстве (7 часов)

Понятие вектора в пространстве. Модуль вектора. Равенство векторов. Сложение и вычитание векторов. Коллинеарные векторы. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение вектора по трем некомпланарным векторам.

6. Повторение курса геометрии 10 класса (13 часов)

11 класс. Модуль «Алгебра и начала математического анализа»

1. Повторение (4 часа)

2. Тригонометрические функции (18 часов)

Область определения и множество значений тригонометрических функций. Четность, нечетность, периодичность тригонометрических функций. Свойства функции у=cosx и её график. Свойства функции у=sinx и её график. Свойства функции у=tgx и её график. Обратные тригонометрические функции.

Основная цель — изучить свойства тригонометрических функций, научить учащихся применять эти свойства при решении уравнений и неравенств; научить строить графики тригонометрических функций, используя различные приемы построения графиков.

Среди тригонометрических формул следует особо выделить те формулы, которые непосредственно относятся к исследованию тригонометрических функций и построению их графиков. Так, формулы $\sin(-x)$ =- $\sin x$ и $\cos(-x)$ = $\cos x$ выражают свойства нечетности и четности функций y= $\sin x$ и y= $\cos x$ соответственно.

Построение графиков тригонометрических функций проводится с использованием их свойств и начинается с построения графика функции у=cosx.С помощью графиков тригонометрических функций решаются простейшие тригонометрические уравнения и неравенства.

Учебная цель — введение понятия тригонометрической функции, формирование умений находить область определения и множество значения тригонометрических функций; обучение исследованию тригонометрических функций на четность и нечетность и нахождению периода функции; изучение свойств функции $y = \cos x$, обучение построению графика функции и применению свойств функции при решении уравнений и неравенств; изучение свойств функции при решении уравнению свойств функции при решении уравнений и неравенств; ознакомление со свойствами функций $y = \tan x$ и $y = \cot x$, изучение свойств функции $y = \cos x$, обучение построению графиков функций и применению свойств функций при решении уравнений и неравенств;

3. Производная и её геометрический смысл (20 часов)

Предел последовательности. Непрерывность функции. Определение производной. Правило дифференцирования. Производная степенной функции. Производные элементарных функций. Геометрический смысл производной.

Основная цель — показать учащимся целесообразность изучения производной и в дальнейшем первообразной (интеграла), так как это необходимо при решении многих практических задач, связанных с исследованием физических явлений, вычислением площадей криволинейных фигур и объемов тел с производными границами, с построением графиков функций. Прежде всего, следует показать, что функции, графиками которых являются кривые, описывают важные физические и технические процессы.

Усвоение геометрического смысла производной и написание уравнения касательной к графику функции в заданной точке является обязательным для всех учащихся.

Овладение правилами дифференцирования суммы, произведения и частного двух функций, вынесения постоянного множителя за знак производной; знакомство с дифференцированием сложных функций и правилам нахождения производной обратной функции; обучение использованию формулы производной степенной функции f(x) = xp для любого действительного реформирование умений находить производные элементарных функций; знакомство с геометрическим смыслом производной обучение составлению уравнений касательной к графику функции в заданной точке.

4. Применение производной к исследованию функций (18 часов)

Возрастание и убывание функции. Экстремумы функции. Наибольшее и наименьшее значения функции. Производная второго порядка, выпуклость и точки перегиба. Построение графиков функций.

Основная цель— является демонстрация возможностей производной в исследовании свойств функций и построении их графиков и применение производной к решению прикладных задач на оптимизацию, дополнительно –применение теоремы Лагранжа для обоснования достаточного условия возрастания и убывания функции, теоремы Ферма и её геометрическому смыслу, а также достаточному условию экстремума, знакомство с понятием асимптоты, производной второго порядка и её приложение к выявлению интегралов выпуклости функции, знакомство с различными прикладными программами, позволяющими построить график функции и исследовать его с помощью компьютера.

Учебная цель – обучение применению достаточных условий возрастания и убывания к

нахождению промежутков монотонности функции; знакомство с понятиями точек экстремума функции, стационарных и критических точек, с необходимыми и достаточными условиями экстремума функции; обучение нахождению точек экстремума функции; обучение нахождению наибольшего и наименьшего значений функции с помощью производной; знакомство с понятием второй производной функции и её физическим смыслом; с применением второй производной для нахождения интегралов выпуклости и точек перегиба функции; формирование умения строить графики функций — многочленов с помощью первой производной, с привлечением аппарата второй производной.

5. Первообразная и интеграл (16 часов)

Первообразная. Правила нахождения первообразных. Площадь криволинейной трапеции. Интеграл и его вычисление. Применение интегралов для решения физических задач.

Основная цель ознакомление учащихся с понятием первообразной и обучение нахождению площадей криволинейных трапеций. Площадь криволинейной трапеции определяется как предел интегральных сумм. Большое внимание уделяется приложениям интегрального исчисления к физическим и геометрическим задачам. Связь между первообразной и площадью криволинейной трапеции устанавливается формулой Ньютона-Лейбница. Далее возникает определенный интеграл как предел интегральной суммы; при этом формула Ньютона-Лейбница также оказывается справедливой. Таким образом, эта формула является главной: с её помощью вычисляются определенные интегралы и находятся площади криволинейных трапеций.

Учебная цель — ознакомление с понятием первообразной, обучение нахождению первообразной для степеней и тригонометрических функций; ознакомление с понятием интегрирования и обучение применению правил интегрирования при нахождении первообразных; формирование понятия криволинейной трапеции, ознакомление с понятием определенного интеграла, обучение вычислению площади криволинейной трапеции в простейших случаях; ознакомить учащихся с применением интегралов для физических задач, научить решать задачи на движение с применением интегралов.

6. Комбинаторика (10 часов)

Правило произведения. Размещения с повторениями. Перестановки. Размещения без повторений. Сочетания без повторений и бином Ньютона.

Основная цель — ознакомление с основными формулами комбинаторики и их применением при решении задач, развивать комбинаторное мышление учащихся, ознакомить с теорией соединений, обосновать формулу бинома Ньютона. Основной при выводе формул числа перестановок и размещений является правило умножения, понимание которого формируется при решении различных прикладных задач. Свойства числа сочетаний доказываются и затем применяются при организации и исследовании треугольника Паскаля.

Учебная цель — овладение одним из основных средств подсчета числа различных соединений, знакомство учащихся с размещениями с повторениями. Знакомство с первым видом соединений — перестановками; демонстрация применения правила произведения при выводе формулы числа перестановок из п элементов. Введение понятия размещения без повторений из м элементов по п; создание математической модели для решения комбинаторных задач, сводимых к подсчету числа размещений; знакомство с сочетаниями и их свойствами; решение комбинаторных задач, сводящихся к подсчету числа сочетаний из м элементов по п; обоснованное конструирование треугольника Паскаля; обучение возведению двучлена в натуральную степень с использованием формулы Ньютона. Составление порядочных множеств (образование перестановок); составление порядочных подмножеств данного множества (образование размещений);доказательство справедливости формул для подсчета числа перестановок с повторениями и числа сочетаний с повторениями, усвоение применения метода математической индукции.

7. Элементы теории вероятностей (10 часов)

Вероятность события. Сложение вероятностей. Вероятность произведения независимых событий.

Основная цель — сформировать понятие вероятности случайного независимого события. Исследование простейших взаимосвязей между различными событиями, а также нахождению вероятностей видов событий через вероятности других событий. Классическое определение вероятности события с равновозможными элементарными исходами формируется строго, и на его основе (с использованием знаний комбинаторики) решается большинство задач. Понятие геометрической вероятности и статистической вероятности вводились на интуитивном уровне. При изложении материала данного раздела подчеркивается прикладное значение теории вероятностей в различных областях знаний и практической деятельности человека.

Учебная цель — знакомство с различными видами событий, комбинациями событий; введение понятия вероятности события и обучение нахождению вероятности случайного события с очевидными благоприятствующими исходами; знакомство с теоремой о вероятности суммы двух несовместных событий и её применением, в частности при нахождении вероятности противоположного события; и с теоремой о вероятности суммы двух производных событий; интуитивное введение понятия независимых событий; обучение нахождению вероятности произведения двух независимых событий.

8. Уравнения и неравенства с двумя переменными (10 часов)

Линейные уравнения и неравенства с двумя переменными. Нелинейные уравнения и неравенства с двумя переменными.

Основная цель — обобщить основные приемы решения уравнений и систем уравнений, научить учащихся изображать на координатной плоскости множество решений линейных неравенств и систем линейных неравенств с двумя переменными, сформировать навыки решения задач с параметрами, показать применение математических методов для решения содержательных задач из различных областей науки и практики.

Учебная цель — научить учащихся изображать на координатной плоскости множество решений линейных неравенств и систем линейных неравенств с двумя переменными.

9. Итоговое повторение курса алгебры и начал математического анализа (30 часов)

Выражения с корнями. Степенные выражения. Иррациональные выражения. Логарифмические выражения. Тригонометрические преобразования выражений. Иррациональные уравнения. Показательные уравнения. Логарифмические уравнения. Показательные и логарифмические неравенства. Тригонометрические уравнения. Дробнорациональные неравенства. Область определения и область значения функции. Чётные и нечётные функции, периодичность функций. Нули функции. Промежутки знакопостоянства, возрастание и убывание функции. Производная и её применение. Первообразная и её применение.

Уроки итогового повторения имеют своей целью не только восстановление в памяти учащихся основного материала, но и обобщение, уточнение, систематизацию знаний по алгебре и началам математического анализа за курс средней школы.

Повторение проводится по основным содержательно-методическим линиям и выстраивается в следующим порядке: вычисления и преобразования, уравнения и неравенства, функции, начала математического анализа.

Модуль «Геометрия»

1. Метод координат в пространстве (12 часов)

Координаты точки и координаты вектора. Скалярное произведение векторов. Уравнение плоскости. Движения. Преобразование подобия.

Основная цель сформировать умение учащихся применять векторно-координатный метод к решению задач на вычисление углов между прямыми и плоскостями и расстояний между двумя точками, от точки до плоскости.

Данный раздел является непосредственным продолжением предыдущего. Вводится понятие прямоугольной системы координат в пространстве, даются определения координат точки и координат вектора, рассматриваются простейшие задачи в координатах. Затем вводится скалярное произведение векторов, кратко перечисляются его свойства (без

доказательства, поскольку соответствующие доказательства были в курсе планиметрии) и выводятся формулы для вычисления углов между двумя прямыми, между прямой и плоскостью. Дан также вывод уравнения плоскости и формулы расстояния от точки до плоскости.

В конце раздела изучаются движения в пространстве: центральная симметрия, осевая симметрия, зеркальная симметрия. Кроме того, рассмотрено преобразование подобия.

2. Тела и поверхности вращения (14 часов)

Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усеченный конус. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы.

Основная цель дать учащимся систематические сведения об основных телах и поверхностях вращения – цилиндре, конусе, сфере, шаре.

Изучение круглых тел (цилиндра, конуса, шара) и их поверхностей завершает знакомство учащихся с основными пространственными фигурами. Вводятся понятия цилиндрической и конической поверхностей, цилиндра, конуса, усеченного конуса. С помощью разверток определяются площади их боковых поверхностей, выводятся соответствующие формулы. Затем даются определения сферы и шара, выводится уравнение сферы и с его помощью исследуется вопрос о взаимном расположении сферы и плоскости. Площадь сферы определяется как предел последовательности площадей описанных около сферы многогранников при стремлении к нулю наибольшего размера каждой грани. В задачах рассматриваются различные комбинации круглых тел и многогранников, в частности описанные и вписанные призмы и пирамид.

В данном разделе изложены также вопросы о взаимном расположении сферы и прямой, о сечениях цилиндрической и конической поверхностей различными плоскостями.

3. Объемы тел и площади их поверхностей (21 часа)

Объем прямоугольного параллелепипеда. Объемы прямой призмы и цилиндра. Объемы наклонной призмы, пирамиды и конуса. Объем шара и площадь сферы. Объемы шарового сегмента, шарового слоя и шарового сектора.

Основная цель ввести понятие объема тела и вывести формулы для вычисления объемов основных многогранников и круглых тел, изученных в курсе стереометрии.

Понятие объема тела вводится аналогично понятию площади плоской фигуры. Формулируются основные свойства объемов и на их основе выводится формула объема прямоугольного параллелепипеда, а затем прямой призмы и цилиндра. Формулы объемов других тел выводятся с помощью интегральной формулы. Формула объема шара используется для вывода формулы площади сферы.

3. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

10 класс.

No	Содержание материала		Количество часов	
Модуль «Алгебра и начала математического анализа»				
1	Делимость чисел		13	
2	Многочлены. Алгебраические уравнения		17	
3	Степень с действительным показателем		11	
4	Степенная функция		16	
5	Показательная функция		10	
6	Логарифмическая функция		17	
7	Тригонометрические формулы		23	
8	Тригонометрические уравнения		17	
9	Итоговое повторение		12	
Модуль «Геометрия»				
10	Предмет стереометрии. Акси стереометрии. Некоторые следствия аксиом	иомы н	3	
11	Параллельность прямых и плоскостей		16	
12	Перпендикулярность прямых и плоскостей		17	
13	Многогранники		12	
14	Векторы в пространстве		7	
15	Итоговое повторение		13	
	Bcero 204			

11 класс

№	Содержание материала	Количество часов			
	Модуль «Алгебра и начала матем	атического анализа»			
1	Повторение	4			
2	Тригонометрические функции	18			
3	Производная и её геометрический смысл	20			
4	Применение производной к исследованию функций	18			
5	Первообразная и интеграл	16			
6	Комбинаторика	10			
7	Элементы теории вероятностей	10			
8	Уравнения и неравенства с двумя переменными	10			
9	Итоговое повторение курса алгебры и начал математического анализа	30			
	Модуль «Геометрия»				
10	Метод координат в пространстве	12			
11	Тела и поверхности вращения	14			
12	Объемы тел и площади их поверхностей	21			
13	Заключительное повторение	21			
	Всего	204			